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J. Phys. A:  Math. Gen. 14 (1981) 1083-1098. Printed in Great Britain 

Nonlinear differential difference equations as Backlund 
transformations 

D Levit 
The Rockefeller University, New York, NY 10021 USA 

Received 5 August 1980 

Abstract. In this paper, one shows that the best known nonlinear differential difference 
equations associated with the discrete Schrodinger spectral problem and also with the 
discrete Zakharov-Shabat spectral problem can be interpreted as Backlund trans- 
formations for some continuous nonlinear evolution equations. 

1. Introduction 

In a recent article Levi and Benguria (1980) have shown that there exists a well defined 
relation between Backlund transformations ( BTS) associated with a class of nonlinear 
evolution equations (NEES) and some nonlinear differential difference equations 
(NDDES). Therein it was proved that, if 

(1) 

is the linear Schrodinger spectral problem (SP) corresponding to the ‘potential’ q ( x ) ,  
then there exists a matrix W, depending on the ‘potential’ q ( x )  and on a different 
‘potential’ q ‘ ( x )  

c L x ( x ,  A )  = U ( q ( x ) ,  A ) $ ( &  A ) S  

W = W ( q ( x ) ,  q ’ ( x ) ,  A )  

such that the usual BTS read 

W x ( q ( x ) ,  q ’ ( x ) ,  A ) =  U(q’ (x ) ,  A ) W ( q ( x ) ,  q ’ ( x ) ,  A ) -  W ( q ( x ) ,  q ‘ b ) ,  A)U(q(x ) ,  A ) .  ( 2 )  

Equation (2) is obtained as the compatibility condition between the SP (1) and the 
following equation 

cL’(x, A )  = W ( q ( x ) ,  q ’ b ) ,  A ) $ k  A )  ( 3 )  
where $’(x, A )  is the wavefunction of the SP (1) corresponding to the ‘potential’ q ’ ( x ) .  By 
defining q(x) = q ( x ,  n )  and q ’ ( x )  = q ( x ,  n + l), where n varies on the integers, equation 
(2) can be thought of as an NDDE. Levi and Benguria (1980) proved this property for the 
BTS associated with the matrix Schrodinger SP, as this SP seemed to the authors to be the 
most general available to them. This property can also be shown, in a quite similar way, 
to hold for the Zakharov-Shabat SP 5 .  
i. Present Address: Istituto di Fisica, Universita di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy. 
f Here and in the following, f, represents a f / a x ,  and f represents aflat .  
9: The discrete sine-Gordon equation considered by Orfanidis (1978) and Levi e ta [  (1980) is just an example 
of where a BT of the Zakharov-Shabat SP is interpreted as an NDDE. 

0305-4470/81/051083 + 16$01.50 @ 1981 The Institute of Physics 1083 



1084 D Levi 

Thus the existence of a matrix W(q,  q ' ,  A ) ,  which is the generator of the BTS for a 
given SP, appears as a quite general property. 

In this paper one wants also to show how the best known NDDES can be cast in this 
scheme. In the literature on NDDES one can find two discrete SPS which have been 
thoroughly discussed: the discrete Schrodinger SP which gives rise to the Toda lattice 
hierarchy (Toda 1975, Flaschka 1974 and Dodd 1978) and its matrix generalisation 
(Bruschi er a1 1980, 1981), and the discrete Zakharov-Shabat SP (Ablowitz and Ladik 
1975, Chiu and Ladik 1977). 

The discrete Schrodinger SP readsf: 

v ( n  -1, t, ~ ) + b ( n ,  t ) v ( n ,  t , A ) + a ( n ,  t ) v ( n  +1, t, A ) = A v ( n ,  t, A ) .  (4) 

The simplest associated NDDE that one obtains from the generalised Wronskian 
technique is (Bruschi er a1 1981) 

u ( n , t ) = a ( n , t ) [ b ( n + l ,  t ) - b ( n , t ) ]  

b ( n , t ) = a ( n , t ) - a ( n - l , t )  

when the reflection coefficient evolves according to 

R (z,  t )  = - p R  (z,  t )  

with z defined by 

A = z + z - '  

and p defined by p = z - 2-l .  

By the definitions 

a b ,  t )  = exp{-[Q(n + 1, t )  - Q(n,  t ) ] )  

b (n ,  t )  = -&, t )  

equation (5) can be written as the Toda lattice equation 

o ( n ,  t)=exp[-(Q(n, t ) - Q ( n  -1, t))l-exp[-(Q(n +1, t ) - Q ( n ,  t ) ) ] .  

( 5 )  

From equation (4), by going to a higher order in the hierarchy of NDDES and setting 
b ( n ,  t )  = 0, we can obtain the equation 

u(n ,  t ) = a ( n , t ) [ a ( n + l ,  t ) -u(n- -1 ,  t ) ]  (7) 

which corresponds to the following evolution of the reflection coefficient 

R ( 2 ,  f )  = -FAR ( 2 ,  t ) .  

Equation (7) is called the generalised Volterra equation (Wadati 1976) and describes a 
system of an infinite number of interacting species. 

The discrete Zakharov-Shabat SP, in the most general formulation proposed by 
Ablowitz and Ladik (1975), reads 

~ l ( n  + 1, z ) = z v ~ ( ~ ,  z ) + Q ( n ) ~ z ( n ,  z ) + S ( ~ ) V ~ ( U  + 1, Z )  
(8) 

v2(11+ 1, z )  = z-'v2(n, z )  + R ( n ) v l ( n ,  z )  + T ( n ) v l ( n  + 1, z )  

and contains four independent 'potentials', Q(n,  t ) ,  R ( n ,  t ) ,  S (n ,  t )  and T ( n ,  t ) .  The 

t For convenience, one writes the discrete Schrodinger SP in the form written down by Bruschi ef al  (1981), 
even if, for the sake of simplicity, one will consider only the abelian case. 
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simplest associated NDDE is 

and contains as subcases the Toda lattice (for R(n,  t )  = 0 ,  T ( n ,  t )  = 1, Q(n,  t )  = -b(n,  t )  
and S ( n ,  t )  = 1 - a(n ,  t ) )  and the self-dual network (for R ( n ,  t )  = *Q(n ,  t )  = I ( n ,  t )  and 
S(n ,  t )  = + T ( n ,  t )  = V ( n ,  t ) )  (Ablowitz and Ladik 1975). From equation (8), by going 
to a higher order in the hierarchy of NDDES and setting S(n ,  t )  = T ( n ,  t )  = 0 ,  one can 
obtain the equation 

d(n, t )  = [l- Q ( n ,  t ) R ( n ,  t ) l [Q(n  + 1, t ) -  Q(n  - 1, t ) ]  

d(n, t ) = [ l - ~ ( n ,  t ) R ( n , t ) l [ R ( n + l , t ) - R ( n - l ,  t ) ]  
(10) 

which corresponds to the following evolution of the reflection coefficient 

d ( 2 ,  t )  = -FAR ( 2 ,  t )  

and contains as subcases the discrete analogue of the nonlinear Schrodinger equation 
(for R ( n ,  t )  = f Q*(n, t ) ,  where by Q" one means the complex conjugate of Q) and of 
the modified Korteweg-de Vries equation (for R ( n ,  t )  = f Q(n,  t ) ) .  

In 8 2 one will show in all details how one can construct, for the Toda lattice equation 
( 5 ) ,  the SP whose associated NEES have the Toda itself as a BT. Section 3 is devoted to a 
brief account of the results one obtains for the Volterra equation (7) while § 4 contains 
the results related to equations (9) and (10). 

2. The Toda lattice as a BT 

The Toda lattice equation (5) can be obtained as the compatibility condition between 
the discrete SP (4) and the equation 

zj(n, t, A )  = a ( n ,  t ) v ( n  + 1, t, A )  (11) 

which gives the evolution of the wavefunction u(n ,  t, A ) .  Defining the vector u ( n ,  t, A )  of 
components ( v ( n ,  t, A ) ,  v ( n  + 1, t, A ) )  equations (4) and (11) can be written as matrices 
of rank 2, equation (4) being a functional equation of second order in the discrete 
variable n. Introducing the variable x instead of the time t, for notational convenience, 
equations (4) and (11) read 
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Now one introduces the continuous SP 

By introducing into the SP (14) a parametrical dependence on a discrete variable n in 
such a way that one can identify 

q(x) = a ( n ,  x )  - 1 

r(x) = -b(n + 1, x )  

one recovers equation (12)T. 
By defining u’(x, A )  = u ( n  - 1, x, A )  and 

q ’ ( x )  = a ( n  - 1, x)- 1 r‘(x) = -b (n ,  x) (16) 

equation (1 3) reads 

and the Toda lattice equation ( 5 ) ,  being the compatibility condition between equation 
(14) and equation (17), which are of the form of equation (1) and equation ( 3 ) ,  is thus 
the BT for the NEES associated with equation (14) interpreted as a SP. As a ET the Toda 
equation reads 

In the following part of this section one will obtain the NEES associated with the SP 

(14) together with its ETS. For q(x) and r(x) vanishing asymptotically, the matrix 

u’(A) = lim ~ ( q ( x ) ,  r(x), A )  
lxl+w 

is constant but not diagonal; thus, introducing the constant, eigenvalue dependent, 
matrix K 

K = ( ~ O + Z V ~ ) / ( ~ + Z ~ ) ~ ’ *  (19) 
where z is defined by equation (6) with respect to A ,  by v0 one means the identity matrix 
of rank 2 and u1 is the first Pauli matrix 

r r l = ( l  0 1  o) V * = ( i  0 -i o )  % = ( I  O )  
0 -1 ’ 

the matrix Uo(h)  can be diagonalised, thus enabling one to define in a unique and 
simple way the associated Jost functions. Under the transformation K the SP (14) reads 

+ Recalling, from Bruschi eta1 (19801, that as In1 +E a ( n ) +  1 and b(n)+O,  the functions q ( x )  and r ( x )  have 
been defined in equation (15) in such a way that both vanish asymptotically. 
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with +(x, z )  defined by 

+(x, z )  =K- . 'u(x ,  A ) .  

u " ( z )  reads: 

1087 

(21) 

it is diagonal and depends only on the 'eigenvalue' z. To introduce a set of Jost 
functions for the SP (20) with the required analytical properties, one introduces the 
variable y = ix, in such a way that the SP (20) reads 

(22) 

For the SP (22) one can introduce, in a similar way as for the Zakharov-Shabat SP 

(Ablowitz 1978), the following two sets of Jost functions 

+,(Y, z )  = - iU(dY),  d Y ) ,  Z)+(Y, z) .  

One can easily prove (a detailed discussion of the SP (22) and of the similar ones that will 
be met in the following sections together with the solution of the inverse problem will be 
given in a subsequent article) that +(y, z )  and rp(y, z )  (respectively $(y, z )  and G(y, z))  
can be continued analytically in the upper (respectively lower) half of the complex plane 
of the 'eigenvalue' z .  One can define the Wronskian of two solutions +l(y, z )  and 
+2(y, z )  of equation (22) as 

Wr(+l, $2) = i exp[ i (  A Y  - Iym d t r i t ) ) ]  +T(Y, z ) ~ ~ + z ( Y ,  z )  (23) 

where by +' one means the transpose of + and, as A and r(y) are taken to be real, 
equation (23) is asymptotically well defined. By direct calculation one gets 

Wry(+1, $2) = 0 

which implies that the Wronskian defined in equation (23) is constant in y. In  particular 
one has 

Wr(+(y, z) ,  i (Y,  2)) = -1 
+m 

Wr(rp(Y, z) ,  &Y> 2))  = -exP( -i I_, d5  rco). 
From the constancy of the Wronskian and the linear independence of +(y, z )  and 
$(y, z )  one can write 

where a ( z )  = Wr(rp, +) (respectively d (z )  = Wr(& 4)) can be continued in the upper 
(respectively lower) half of the complex z plane. By calculating Wr(q, @) one gets the 
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following relation between the coefficients of equation (24) 
+m 

a ( z ) a ( z ) + 6 ( z ) b ( z )  = 

which, for r ( y )  = 0, reduces to the usual unitarity relation of the Schrodinger SP. 

Defining the reflection and transmission coefficients as 

one can obtain the following asymptotic behaviour for the matrix solution q ( y ,  z )  of 
equation (22 ) ,  constructed by putting together two independent solutions of the SP (22) 

To obtain the NEES and the BTS one applies the technique of the generalised Wronskian 
(Calogero 1976), by introducing the following Wronskian 

GW(V'(x, A ) ,  V(x, A ) )  = V'-'(x, A)F(x,  A)V(x, A )  (27) 
where by V(x, A )  one means a nonsingular matrix solution of the SP (14) and F(x,  A )  is a 
generic matrix function of elements a(x, A ) ,  b(x, A ) ,  c(x, A )  and d ( x ,  A )  

From equation (27) one easily obtains? 

GWI -a= 1- m dxV'-'( 

As, by equation (21), one has 

with 

+CO +m 
a, - b  - c ( l  +q' )  6, + a ( l  + q ) - d ( l  +q ' )+b(h  + r )  

C, + U  - d - c ( A  + r ' )  d, + ~ ( l  + q )  + b + d ( r  - r ' )  

(28) 

GW = ~ I - ~ K - ~ F K I ~  = q ~ - ~ F ; w  

F=-( 
- 1 a - z 2 d - z ( c - b )  2 ( a - d ) + b - z 2 c  

1 - z 2  c - Z 2 b  - r ( a  - d )  d - z z u  + z ( c  -6)  

the LHS of equation (28) becomes, taking into account equation (26): 

1 (E+dR'R nR-dR' 
-oc l + R ' R '  ER'-dR i iRR'+d 

,=RI + FR e i W Y  ,=ER' e - l @ Y  - 6 elYw 

FRRI e ~ ~ Y  e - l w ~  -(?E + FR' e'@)) 
+ 

f Here and in the following one will omit the x and A dependence of the matrix solution V ( x ,  A )  and of F and 
its elements a, b, c, d. 
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To give some meaning to equation (29) one has two possible choices for F(x,  A ) .  

thus 
( 1 )  All elements of F(x,  A ) vanish as /x I + 00 so that also d, E, E and 2 vanish and 

GW 1:: = 0. (30) 

(2) a,  6, c and d do not depend on x, but are such that b = E = 0; in this case one must 

( 3 1 )  

In case ( 1 )  from equations (28) and (30), after some manipulation, one gets the 
following relations 

have 

U (A  ) = d + CA b = -c. 

+m 

dx VI-' O b  1, 

A J L  dxV'-'(c o ) ~ =  

(0; -b, - b r + ( l  + q )  5," d t [ b  - c ( l  + q ' ) ] + ( l  + q ' )  e""'5," dt[b - c ( l  +q)1 e-y(" 
c, - cr' +JXm dt[b - c ( l  + q')]+ eY(" 5," dt [b  - c ( 1  + q ) ]  e-yce); 0 

(32) 

with 

Equation (32) defines an operator 9 such that 

-b, - br + ( 1  + q )  5," dt[b - c ( l  + q ' ) ] +  ( 1  +q ' )  ey(x)J',mdt ePY(')[b - c ( l + q ) ]  
= (  c , - c r ' + ~ , " d ~ [ b - c ( l + q ' ) ] + e Y ' X ' ~ ~ d ~ e - Y ' ~ ' [ ~ - ~ ( l + q ) ]  

( 3 4 )  
with 77 such that 

while equation (33) provides the necessary rules for writing a given matrix in a 
pre-required form, i.e. to make it off-diagonal or with the first column zero. For 
example, from equation (33) one obtains 

)v 
0 b - c ( l + q ' )  I, 0 c ,+c(r-r ' )  

+'x +m 

dxV'-'rl/:) v = J-a dxV'-'( 

i.e. one can define the operator JZZ such that 
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with p such that 

In case (2), from equations (28) and (31 ) ,  one gets: 
t m  

0 - (4' -- q 1 ( I - R ' R  - ( R ' - R )  dxV'-'p( 
- ) V  (36) 

l+R'R'  RI-R 1+RR' If--) 

where, to get equation (36), one has set a = d = 1,  b = c = 0 and to get equation (37) one 
has set a = A ,  b = -1, c = 1 and d = 0 and has used equations (33) and (34). 

From equations (34)-(37) one can construct the hierarchy of NEES and BTS that can 
be associated with the SP (14). 

Setting 

4(x) = q(x, t )  

r(x) = r ( x ,  t )  

R ( z ) = R ( z , t )  R ' ( z ) = R ( z , t ) + k ( z , t ) d t  

R ( z ) = I ? ( z ,  t )  R ' (z)=I?(z ,  t ) + R ( z ,  t )d t  

q t ( x ) = q ( x ,  t ) + c i ( x ,  t )d t  

r ' ( x )  = r ( x ,  t )  + f ( x ,  t )  dt 

T ( z )  = T ( z ,  t )  

T ( z )  = T ( z ,  t )  

P ( z )  = F ( z ,  t )  + +(z,  t )  dt 

T ' ( z )  = T ( z ,  t )  + f(z,  t )  dt 

equations (3 4)-( 3 7) become : 

From equations (39)-(42) one can assert that, if q(x, f )  and r(x, t )  evolve in time 
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according to the following NEE 

then the corresponding reflection and transmission coefficients evolve linearly accord- 
ing to 

R = pf(A)R T=O 
R = -  P f  (A )R  T = O .  

In the following one writes down the simpler systems of the hierarchy given by equation 
(43) .  For f ( A )  = 1, one has 

4 = 41. 

for f ( A )  = A one has 

r = r,, 

4 = -qxx - 2r, - 2(rq), i. = r,, -2q,A(r2), 

and for f ( A )  = A 2 - 4  one has 

4 = qxxx i- 6qq, + 3[r2(1 + q )  + rq,], 

i. = r,,, + ( r  - 3rr, + 6rq),. 3 (44)  

It is worthwhile to notice that equation (44) contains the Korteweg-de Vries equation 
as a subcase, by setting r(x,  to) = 0.  

The auto-Backlund transformations are obtained (Calogero 1975) by taking into 
account equations (34)-(37) and are given by 

where p is an arbitrary constant; if the ‘potentials’ q, r and q’, r’ are related by equation 
(45) ,  the corresponding reflection and transmission coefficients are transformed 
according to the following relations: 

From equation (451, for p = 0, one gets the Toda lattice equation as written in equation 
(18). For p arbitrary and f ( A )  = 1, one gets: 

qx = (4  - q ’ ) [ P  - r ’ +  

r: = ( r  - r’![ P - r’+ 1, d t ( q  - 4’11 - ( q  -4’) 

d ~ ( q  - 4’)I - ( r  - r ’ ) ( l +  4 )  

33 

which, using formulae (15) and (16), can be cast in the form 
00 

b ( n )  = [ a ( n )  - a ( n  - l)](p + b ( n ) +  d t ( a ( n )  - a ( n  - 1))) +-a(n ) [b (n  + 1) - b ( n ) ]  
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i.e. a nonlocal in time, nonlinear lattice equation. 

3. The Volterra equation as a BT 

Equation (7) is obtained as the compatibility condition between the SP (4) with 
b(n ,  t )  = 0 and the following evolution equation of the wavefunction v ( n ,  f ,  A )  

z;(n, t, A )  = -a(n,  t ) v ( n ,  t, A ) + h a ( n ,  t ) v ( n  + 1, t, A ) .  

In matrix form, using the variable x instead of the time t, one gets: 

Introducing the two pairs of potentials q, r and q’, r’ in such a way that 

q ( x )  = a ( n ,  x )  - 1 

r ( x ) = a ( n + l , x ) - 1  

q ’ ( x )  = a ( n  - 1 ,  x ) -  1 

r ’ ( x )  = a ( n ,  x )  - 1 

equations (7), (46) and (47) become 

where thus equation (48) is a BT for the hierarchy of NEES associated with the SP (49) and 
W(q, r, q‘, r’, A ) ,  defined by equation (50) ,  is thus the generator of the BT (48). 

Using a method similar to that in the previous section, one diagonalises the matrix U 
by the use of the same matrix K given by equation (19), after having defined the 
‘eigenvalue’ z as in equation (6). Introducing the variable y = ix, the SP (49) reads 

)m z )  
z 2  + z 2(q - r ) / (  1 - 2 2 ,  (qz - *  - U)/( 1 - z 2 ,  

- q z ) / (  1 - z 2 ,  z -2 - (q  - r ) / ( l  - 2 2 ,  
IL,(Y, z )  = -i( .&-1 

It is worthwhile to notice that the SP (51) is of the same kind as the one introduced for 
the Toda lattice ( 2 2 )  up to the proper change of z into z 2 .  
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The Wronskian is 

and is constant. Introducing, by analogy with the previous section, the Jost functions 

one can define, as in equations (24) and ( 2 5 ) ,  the reflection and transmission coefficients 
R ( z )  and T ( z ) ,  and thus obtain the following asymptotics for the matrix solution of 
equation (5 1) 

- i y z - z  . ) 
R ( z )  e-'''* - i ) z z  e - 

) + + a ( R ( z )  -e 

Having defined the generalised Wronskian as in equation (27) ,  one gets 

To construct the hierarchy of NEES one uses equation (38) to get 

TA '( $) = T L ( $ )  

( 5 3 )  
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Thus, if the reflection and transmission coefficients evolve in time according to the 
following linear equations 

R =Apf(A2)R T = O  

6 = -Ap f (A2)R  = 0 

the 'potentials' q and r satisfy the following NEE 

The first system one obtains from equation (54) is for f ( A 2 )  = 1 

X ,  
r = -.r 4 = - q x  

for f ( A 2 )  = A 2  

and for f(A2)=A4-4A2 

Equation ( 5 5 )  has, as a subcase for r ( x ,  t )  = - q ( x ,  t ) ,  the modified Korteweg-de Vries 
equation. As for the BTS, one has for R '  = z2R, R' = z - ~ I ? ,  T' = T and TI= i= the 
Volterra equation (48) and for R '  = z4R, R' = Y41?, T' = T and j=' = T 

qx = ( q ' - q )  Jx dt (q ' -q  + rl -  r + q r r ' - q r )  - ( r ' -  r )  - ( q ' r l - q r )  - q ( q ' - q )  

r: = ( r l - r )  d & ( q ' - q + r ' - r + q ' r r - q r ) - ( q r - q ) - ( q ' r ' - q r ) - r r ( r ' -  r )  

i.e. a nonlocal BT. 

m 

6 
4. The NDDES of the discrete Zakharov-Shabat SP as BTS 

Equation (9) is the compatibility condition between the SP (8) and the following 
equation which gives the evolution of the vector wavefunction u ( n ,  t, z )  of components 
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where O(k,  t )  = T ( k ,  t ) [ Q ( k  + 1, t ) -  Q ( k ,  t ) ] + S ( k ,  t ) [ R ( k  + 1, t ) - R ( k ,  t ) ] .  
In this case, the interpretation of equation (56) as a SP for which equation (9) is a BT, 

gives rise to a SP with an infinity of 'potentials', due to the infinite sums present in the 
diagonal terms of equation (56). Thus one leaves equation ( 9 )  as a non interesting case, 
going on to equation (10) .  Equation (10 )  is obtained as the compatibility condition 
between the following linear equations for the vector eigenfunction u ( n ,  t, 2) 

u ( n  + 1 ,  t, t )  = ( R ( n ,  Z t )  Q ( n ; t ) ) u ( n ,  z t, z )  

2 ' - Q ( n , t ) R ( n - 1 ,  t )  zQ(n ,  t ) + z - ' Q ( n - 1 ,  t )  
z R ( n - l , t ) + z - ' R ( n ,  t )  ~ - ~ - R ( n , t ) Q ( n - l ,  t )  

zj(n, t, z )  = 

Changing the time variable into the x variable and introducing the four potentials q ( x ) ,  
r ( x ) ,  p ( x )  and s ( x )  in the following way 

q ( x )  = Q(n ,  x )  

r ( x )  = R ( n ,  x )  

q ' ( x )  = Q ( n  + 1, x )  

r ' ( x )  = R ( n  + 1, x )  

p ( x )  = Q ( n  - 1, x )  

s ( x )  = R ( n  - 1, x )  

~ ' ( x )  = Q ( n ,  x )  

s ' ( x )  = R (n ,  x )  

equation (10 )  reads 

4 ' P I  r = s '  

4 x  = ( 1  - 4 r ) ( q ' - p )  rx = (1  -qr ) ( r ' - s )  

and thus is a BT for the SP 

(57)  

Introducing, as before, the variable y = ix, the SP (58) reads 

v,(Y,  z )  = -iU(q(y),  P ( Y ) ,  r ( y ) ,  s ( Y ) ,  Z ) U ( Y ,  2). (59 )  

As one chooses q ( y ) ,  r ( y ) ,  p ( y )  and s ( y )  to vanish at infinity, the Jost solutions for the SP 
(59) are given by equation (52). The Wronskian is defined by 

and is constant in y .  The asymptotics of the fundamental matrix solution of equation 
(59) is given by equation (53). Having defined the generalised Wronskian as in equation 
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(27), one  gets 

+ W  

) V  ( 6 2 )  
q’s’ - qs - z (q’ -q)  - z - ’ ( p ‘  - p )  

-z(s’- s)  - z-’(r‘ - r )  r’p’ - rp 

+a 

( 6 3 )  
q’s’ - qs 

-z(s’+ s) -Z - ’ ( r ’+  r )  
z ( 4  + 4’) + z - ’ ( p ’  + p )  

- ( r ’ p ’  - r p )  

Having set 

R ( z ) = R ( z ,  t )  R ’ ( z ) = R ( z ,  t ) + h ( z ,  t )  d t  

R ( z ) = ~ ? ( z ,  t )  R ’ ( z )=R(z ,  t ) + k ( z ,  t ) d t  

F ( z )  4 F(z ,  t )  T ’ (Z )  = T ( Z ,  t )  + +(z ,  t )  d t  

T ( z )  = T ( z ,  t )  T‘ (z )  = T(z ,  t )  + F ( z ,  t )  d t  

one  has 
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with 
m 

Xo==-  d.f(ip++r-4s-qS) 

Fz( 1 -RR R RE)=!-, R dxV-'v( - Z S - Z  z q + z - : f )  r V. 
+CO 

Thus, if the reflection and transmission coefficients evolve according to the following 
linear equation 

R = -f(Ap)R T = O  R = f(Ap)R T=O 

then the 'potentials evolve according to the following NEE 

z (4 - 4x01 + 2 ~ (d - PXd ) = f(L)( zq+z-:f). 
Z ( S  + s X o ) + z - ' ( i + r x o )  -2s-z r 

The simplest elements of equation (64) are for f ( A p )  = 1 

4 ' 4  d = p  i = - r  s = -S, 

for f ( A p )  = Ap * 
m 

4 = q X + 2 q ( r p - q s ) - 2 q l  X d5[rp-qs12 

P =Px+2P(rP-qs)-2P d5[rp-4sI2 i* 
i = r x + 2 r  d([rp-qs]' 

/xm 

I: S = s, + 2s d([rp - qsI2. 

As for the BTS, from equations (62) and (63), applying equations (60) and (61) one 
arrives, after some nontrivial calculations, at equation (57)  corresponding with the 
following relation between the reflection and transmission coefficients: 

f It is worthwhile to notice that, for U = ( r p  - q s ) ,  from equation (65) one has: U = U, + 2 u 2  
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